
Function reference
-
create_df() - Create a data frame of protein intensities
-
aver_techreps() - Compute average intensity
-
filterbygroup_na() - Filter proteins by group level missing data
-
rem_sample() - Remove user-specified samples
-
impute_na() - Impute missing values
-
normalize_data() - Normalize intensity data
-
find_dep() - Identify differentially expressed proteins between groups
-
corr_plot() - Correlation between technical replicates
-
heatmap_na() - Visualize missing data
-
impute_plot() - Visualize the impact of imputation
-
norm_plot() - Visualize the effect of normalization
-
volcano_plot() - Volcano plot
-
heatmap_de() - Heatmap of differentially expressed proteins
-
onegroup_only() - Proteins that are only expressed in a given group
-
pre_process() - Pre-process protein intensity data for modeling
-
rem_feature() - Remove user-specified proteins (features) from a data frame
-
split_data() - Split the data frame to create training and test data
-
train_models() - Train machine learning models on training data
-
test_models() - Test machine learning models on test data
-
feature_plot() - Visualize feature (protein) variation among conditions
-
varimp_plot() - Variable importance plot
-
performance_plot() - Model performance plot
-
roc_plot() - ROC plot
-
covid_fit_df - Suvarna et al 2021 LFQ data (fit object)
-
covid_norm_df - Suvarna et al 2021 LFQ data (normalized)
-
ecoli_norm_df - Cox et al 2014 LFQ data (normalized)
-
ecoli_fit_df - Cox et al 2014 LFQ data (fit object)