Function reference
-
create_df()
- Create a data frame of protein intensities
-
aver_techreps()
- Compute average intensity
-
filterbygroup_na()
- Filter proteins by group level missing data
-
rem_sample()
- Remove user-specified samples
-
impute_na()
- Impute missing values
-
normalize_data()
- Normalize intensity data
-
find_dep()
- Identify differentially expressed proteins between groups
-
corr_plot()
- Correlation between technical replicates
-
heatmap_na()
- Visualize missing data
-
impute_plot()
- Visualize the impact of imputation
-
norm_plot()
- Visualize the effect of normalization
-
volcano_plot()
- Volcano plot
-
heatmap_de()
- Heatmap of differentially expressed proteins
-
onegroup_only()
- Proteins that are only expressed in a given group
-
pre_process()
- Pre-process protein intensity data for modeling
-
rem_feature()
- Remove user-specified proteins (features) from a data frame
-
split_data()
- Split the data frame to create training and test data
-
train_models()
- Train machine learning models on training data
-
test_models()
- Test machine learning models on test data
-
feature_plot()
- Visualize feature (protein) variation among conditions
-
varimp_plot()
- Variable importance plot
-
performance_plot()
- Model performance plot
-
roc_plot()
- ROC plot
-
covid_fit_df
- Suvarna et al 2021 LFQ data (fit object)
-
covid_norm_df
- Suvarna et al 2021 LFQ data (normalized)
-
ecoli_norm_df
- Cox et al 2014 LFQ data (normalized)
-
ecoli_fit_df
- Cox et al 2014 LFQ data (fit object)