This function normalizes data using a user-specified normalization method.
Details
This function normalizes intensity values to achieve consistency among samples.
It assumes that the intensities in the data frame have been log-transformed, therefore, it is important to make sure that
create_dfwas run withlog_tr = TRUE(default) when creating theraw_dfobject.
See also
impute_naSee
normalizeBetweenArraysin the R packagelimmafor more information on the different normalization methods available.
Examples
## Generate a raw_df object with default settings. No technical replicates.
raw_df <- create_df(
prot_groups = "https://raw.githubusercontent.com/caranathunge/promor_example_data/main/pg1.txt",
exp_design = "https://raw.githubusercontent.com/caranathunge/promor_example_data/main/ed1.txt"
)
#> 0 empty row(s) removed.
#> 0 empty column(s) removed.
#> 80 protein(s) (rows) only identified by site removed.
#> 65 reverse protein(s) (rows) removed.
#> 42 protein potential contaminant(s) (rows) removed.
#> 1923 protein(s) identified by 2 or fewer unique peptides removed.
#> Zeros have been replaced with NAs.
#> Data have been log-transformed.
## Impute missing values in the data frame using the default minProb
## method prioir to normalization.
imp_df <- impute_na(raw_df)
## Normalize the imp_df object using the default quantile method
norm_df1 <- normalize_data(imp_df)
## Use the cyclicloess method
norm_df2 <- normalize_data(imp_df, method = "cyclicloess")
## Normalize data in the raw_df object prior to imputation.
norm_df3 <- normalize_data(raw_df)
