This function normalizes data using a user-specified normalization method.
Arguments
- df
An
imp_df
object with missing values imputed usingimpute_na
or araw_df
object containing missing values.- method
Name of the normalization method to use. Choices are
"none", "scale", "quantile" or "cyclicloess."
Default is"quantile."
Details
This function normalizes intensity values to achieve consistency among samples.
It assumes that the intensities in the data frame have been log-transformed, therefore, it is important to make sure that
create_df
was run withlog_tr = TRUE
(default) when creating theraw_df
object.
See also
impute_na
See
normalizeBetweenArrays
in the R packagelimma
for more information on the different normalization methods available.
Examples
## Generate a raw_df object with default settings. No technical replicates.
raw_df <- create_df(
prot_groups = "https://raw.githubusercontent.com/caranathunge/promor_example_data/main/pg1.txt",
exp_design = "https://raw.githubusercontent.com/caranathunge/promor_example_data/main/ed1.txt"
)
#> 0 empty row(s) removed.
#> 0 empty column(s) removed.
#> 80 protein(s) (rows) only identified by site removed.
#> 65 reverse protein(s) (rows) removed.
#> 42 protein potential contaminant(s) (rows) removed.
#> 1923 protein(s) identified by 2 or fewer unique peptides removed.
#> Zeros have been replaced with NAs.
#> Data have been log-transformed.
## Impute missing values in the data frame using the default minProb
## method prioir to normalization.
imp_df <- impute_na(raw_df)
## Normalize the imp_df object using the default quantile method
norm_df1 <- normalize_data(imp_df)
## Use the cyclicloess method
norm_df2 <- normalize_data(imp_df, method = "cyclicloess")
## Normalize data in the raw_df object prior to imputation.
norm_df3 <- normalize_data(raw_df)